# AWS Bedrock x AutoRAG ## Setting Up the AWS profile First, you need to have an AWS account. And you need to set up the AWS CLI with your AWS account. You can find detailed information about the AWS CLI configuration at the [following link](https://docs.aws.amazon.com/cli/v1/userguide/cli-configure-files.html) ## Using AWS Bedrock with AutoRAG For using AWS Bedrock, you can use Llama Index LLm's `bedrock` at the AutoRAG config YAML file without any further configuration. ### Writing the Config YAML File Here’s the modified YAML configuration using `Bedrock`: ```yaml nodes: - node_line_name: node_line_1 nodes: - node_type: generator modules: - module_type: llama_index_llm llm: bedrock model: amazon.titan-text-express-v1 profile_name: your_profile_name # Plz replace this with your profile name ``` You can find the model ID at the [following link](https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids.html) multiple models can be used in the same way. ```yaml nodes: - node_line_name: node_line_1 nodes: - node_type: generator modules: - module_type: llama_index_llm llm: bedrock model: [amazon.titan-text-express-v1, Claude 3.5 Sonnet, Llama 3.2 90B Instruct] profile_name: your_profile_name # Plz replace this with your profile name ``` For full YAML files, please see the sample_config folder in the AutoRAG repo at [here](https://github.com/Marker-Inc-Korea/AutoRAG/tree/main/sample_config/rag). ### Running AutoRAG Before running AutoRAG, make sure you have your QA dataset and corpus dataset ready. If you want to know how to make it, visit [here](../../data_creation/tutorial.md). Run AutoRAG with the following command: ```bash autorag evaluate \ - qa_data_path ./path/to/qa.parquet \ - corpus_data_path ./path/to/corpus.parquet \ - project_dir ./path/to/project_dir \ - config ./path/to/bedrock_config.yaml ``` AutoRAG will automatically experiment and optimize RAG.