# Nvidia Nim x AutoRAG ## Setting Up the Environment ### Installation First, you need to have AutoRAG. Install AutoRAG: ```bash pip install autorag ``` And go to the NVIDIA NIM [website](https://build.nvidia.com/nim), register, and select what models that you want use. ![nvidia_nim](../../_static/integration/nvidia_nim.png) After select the right model, click “Build with this NIM” Button. And copy your api key! ![nvidia_api](../../_static/integration/nvidia_api.png) ## Using NVIDIA NIM with AutoRAG For using NVIDIA NIM, you can use Llama Index LLm's `openailike` at the AutoRAG config YAML file without any further configuration. It is EASY! ### Writing the Config YAML File Here’s the modified YAML configuration using `NVIDIA NIM`: ```yaml nodes: - node_line_name: node_line_1 nodes: - node_type: generator modules: - module_type: llama_index_llm llm: openailike model: nvidia/llama-3.1-nemotron-70b-instruct api_base: https://integrate.api.nvidia.com/v1 api_key: your_api_key ``` For full YAML files, please see the sample_config folder in the AutoRAG repo at [here](https://github.com/Marker-Inc-Korea/AutoRAG/tree/main/sample_config/rag). ### Running AutoRAG Before running AutoRAG, make sure you have your QA dataset and corpus dataset ready. If you want to know how to make it, visit [here](../../data_creation/tutorial.md). Run AutoRAG with the following command: ```bash autorag evaluate \ - qa_data_path ./path/to/qa.parquet \ - corpus_data_path ./path/to/corpus.parquet \ - project_dir ./path/to/project_dir \ - config ./path/to/nim_config.yaml ``` AutoRAG will automatically experiment and optimize RAG.