--- myst: html_meta: title: AutoRAG - Run local model in AutoRAG description: Learn how to run local model in AutoRAG keywords: AutoRAG,RAG,RAG model,RAG LLM,embedding model,local model --- # Configure LLM & Embedding models ## Index - [Configure the LLM model](#configure-the-llm-model) - [Modules that use LLM model](#modules-that-use-llm-model) - [Supporting LLM models](#supporting-llm-models) - [Add more LLM models](#add-more-llm-models) - [Configure the Embedding model](#configure-the-embedding-model) - [Modules that use Embedding model](#modules-that-use-embedding-model) - [Supporting Embedding models](#supporting-embedding-models) - [Add your embedding models](#add-your-embedding-models) ## Configure the LLM model ### Modules that use LLM model Most of the modules that using LLM model can take `llm` parameter to specify the LLM model. - [llama_index_llm](nodes/generator/llama_index_llm.md) The following modules can use generator module, which including `llama_index_llm`. - [hyde](nodes/query_expansion/hyde.md) - [query_decompose](nodes/query_expansion/query_decompose.md) - [multi_query_expansion](nodes/query_expansion/multi_query_expansion.md) - [tree_summarize](nodes/passage_compressor/tree_summarize.md) - [refine](nodes/passage_compressor/refine.md) ### Supporting LLM Models We support most of the LLMs that LlamaIndex supports. You can use different types of LLM interfaces by configuring the `llm` parameter: | LLM Model Type | llm parameter | Description | |:--------------:|:--------------:|-------------| | OpenAI | openai | For OpenAI models (GPT-3.5, GPT-4) | | OpenAILike | openailike | For models with OpenAI-compatible APIs (e.g., Mistral, Claude) | | Ollama | ollama | For locally running Ollama models | | Bedrock | bedrock | For AWS Bedrock models | For example, if you want to use `OpenAILike` model, you can set `llm` parameter to `openailike`. ```yaml nodes: - node_line_name: node_line_1 nodes: - node_type: generator modules: - module_type: llama_index_llm llm: openailike model: mistralai/Mistral-7B-Instruct-v0.2 api_base: your_api_base api_key: your_api_key ``` At the above example, you can see `model` parameter. This is the parameter for the LLM model. You can set the model parameter for LlamaIndex LLM initialization. The most frequently used parameters are `model`, `max_token`, and `temperature`. Please check what you can set for the model parameter at [LlamaIndex LLM](https://docs.llamaindex.ai/en/stable/module_guides/models/llms/). #### Using HuggingFace Models There are two main ways to use HuggingFace models: 1. **Through OpenAILike Interface** (Recommended for hosted API endpoints): ```yaml nodes: - node_line_name: node_line_1 nodes: - node_type: generator modules: - module_type: llama_index_llm llm: openailike model: mistralai/Mistral-7B-Instruct-v0.2 api_base: your_api_base api_key: your_api_key ``` 2. **Through Direct HuggingFace Integration** (For local deployment): ```yaml nodes: - node_line_name: node_line_1 nodes: - node_type: generator modules: - module_type: llama_index_llm llm: huggingface model_name: mistralai/Mistral-7B-Instruct-v0.2 device_map: "auto" model_kwargs: torch_dtype: "float16" ``` #### Common Parameters The most frequently used parameters for LLM configuration are: - `model`: The model identifier or name - `max_tokens`: Maximum number of tokens in the response - `temperature`: Controls randomness in the output (0.0 to 1.0) - `api_base`: API endpoint URL (for hosted models) - `api_key`: Authentication key (if required) For a complete list of available parameters, please refer to the [LlamaIndex LLM documentation](https://docs.llamaindex.ai/en/stable/module_guides/models/llms/). ### Add more LLM models You can add more LLM models for AutoRAG. You can add it by simply calling `autorag.generator_models` and add new key and value. For example, if you want to add `MockLLM` model for testing, execute the following code. ```{attention} It was major update for LlamaIndex to v0.10.0. The integration of llms must be installed to different packages. So, before add your model, you should find and install the right package for your model. You can find the package at [here](https://pretty-sodium-5e0.notion.site/ce81b247649a44e4b6b35dfb24af28a6?v=53b3c2ced7bb4c9996b81b83c9f01139). ``` ```python import autorag from llama_index.core.llms.mock import MockLLM autorag.generator_models['mockllm'] = MockLLM ``` Then you can use `mockllm` at config YAML file. ```{caution} When you add new LLM model, you should add class itself, not the instance. Plus, it must follow LlamaIndex LLM's interface. ``` ## Configure the Embedding model ### Modules that use Embedding model Modules that using an embedding model can take `embedding_model` parameter to specify the LLM model. - [vectordb](nodes/retrieval/vectordb.md) ### Configure the model name in the YAML file For easier use, since v0.3.13, we support configuring model name in the YAML file. We support this new configuration option, plus the legacy configuration option that is described below. So if you used before v0.3.13 version, it is okay to use the legacy configuration option. We support the following embedding model types: - openai - huggingface - mock - ollama You can configure the embedding model option directly in the YAML file `vectordb` section. If you want to know how to configure vectordb in AutoRAG, please go [here](https://docs.auto-rag.com/integration/vectordb/vectordb.html). For example, ```yaml vectordb: - name: autorag_test db_type: milvus embedding_model: - type: huggingface model_name: intfloat/multilingual-e5-large-instruct ... ``` or ```yaml vectordb: - name: autorag_test db_type: milvus embedding_model: - type: openai model_name: text-embedding-3-small ... ``` If you want to use your own embedding model, simply change the model_name at huggingface(or ollama) type embedding model configuration. ### Supporting Embedding models (Legacy) As default, we support OpenAI embedding models and some of the local models. To change the embedding model, you can change the `embedding_model` parameter to the following values: | Embedding Model Type | embedding_model parameter | |:---------------------------------------------------------------------------------------------------------:|:-------------------------------------:| | Default openai embedding (text-embedding-ada-002) | openai | | openai large embedding (text-embedding-3-large) | openai_embed_3_large | | openai small embedding (text-embedding-3-small) | openai_embed_3_small | | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | huggingface_baai_bge_small | | [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) | huggingface_cointegrated_rubert_tiny2 | | [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | huggingface_all_mpnet_base_v2 | | [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) | huggingface_bge_m3 | For example, if you want to use OpenAI text embedding large model, you can set `embedding_model` parameter to `openai_embed_3_large` when setting vectordb. ```yaml vectordb: - name: chroma_openai db_type: chroma client_type: persistent embedding_model: openai_embed_3_large collection_name: openai_embed_3_large nodes: - node_line_name: node_line_1 nodes: - node_type: retrieval modules: - module_type: vectordb vectordb: chroma_openai ``` ### Add your embedding models (Legacy) You can add more embedding models for AutoRAG. You can add it by simply calling `autorag.embedding_models` and add new key and value. For example, if you want to add `[KoSimCSE](https://huggingface.co/BM-K/KoSimCSE-roberta-multitask)` model for Korean embedding, execute the following code. ```python import autorag from autorag import LazyInit from llama_index.embeddings.huggingface import HuggingFaceEmbedding autorag.embedding_models['kosimcse'] = LazyInit(HuggingFaceEmbedding, model_name="BM-K/KoSimCSE-roberta-multitask") ``` Then you can use `kosimcse` at config YAML file. ```{caution} When you add new embedding model, you should use `LazyInit` class from autorag. The additional parameters have to be keyword parameter in the `LazyInit` initialization. ``` ## Use vllm You can use vllm to use local LLM. For more information, please check out [vllm](nodes/generator/vllm.md) generator module docs.