# Migration Guide 1. [v0.3 migration guide](#v03-migration-guide) ## v0.3 migration guide ### Data Creation From the v0.3 version, the previous data creation library goes into the `legacy` package. Instead of legacy data creation, the `beta` package is introduced. There are no longer `beta` package at the data, and you can use it without `beta` import. For example, - v0.2 version ```python from autorag.data.corpus import langchain_documents_to_parquet from autorag.data.qacreation import generate_qa_llama_index, make_single_content_qa ``` ```python from autorag.data.beta.query.llama_gen_query import factoid_query_gen from autorag.data.beta.sample import random_single_hop from autorag.data.beta.schema import Raw ``` - v0.3 version ```python from autorag.data.legacy.corpus import langchain_documents_to_parquet from autorag.data.legacy.qacreation import generate_qa_llama_index, make_single_content_qa ``` ```python from autorag.data.qa.query.llama_gen_query import factoid_query_gen from autorag.data.qa.sample import random_single_hop from autorag.data.qa.schema import Raw ``` ## v0.3.7 migration guide At v0.3.6, there are changes of the vectordb. You have to specify what vectordb you want to use at the config YAML file. - v0.3.6 version (previous v0.3.7) ```yaml node_lines: - node_line_name: retrieve_node_line nodes: - node_type: retrieval # represents run_node function strategy: # essential for every node metrics: [retrieval_f1, retrieval_recall] top_k: 10 # node param, which adapt to every module in this node. modules: - module_type: bm25 bm25_tokenizer: [ facebook/opt-125m, porter_stemmer ] - module_type: vectordb embedding_model: [openai_embed_3_large, openai_embed_3_small] - module_type: hybrid_rrf weight_range: (4, 30) ``` - v0.3.7 version ```yaml vectordb: - name: openai_embed_3_small db_type: chroma client_type: persistent embedding_model: openai_embed_3_small collection_name: openai_embed_3_small path: ${PROJECT_DIR}/resources/chroma - name: openai_embed_3_large db_type: chroma client_type: persistent embedding_model: openai_embed_3_large collection_name: openai_embed_3_large path: ${PROJECT_DIR}/resources/chroma embedding_batch: 50 node_lines: - node_line_name: retrieve_node_line nodes: - node_type: retrieval # represents run_node function strategy: # essential for every node metrics: [retrieval_f1, retrieval_recall] top_k: 10 # node param, which adapt to every module in this node. modules: - module_type: bm25 bm25_tokenizer: [ facebook/opt-125m, porter_stemmer ] - module_type: vectordb vectordb: [openai_embed_3_large, openai_embed_3_small] - module_type: hybrid_rrf weight_range: (4, 30) ``` For more information about vectordb, you can refer to the [vectordb documentation](integration/vectordb/vectordb.md).