HuggingFace LLM x AutoRAG

Using HuggingFace LLM with AutoRAG

For using HuggingFace LLM, you can use Llama Index LLm’s openailike at the AutoRAG config YAML file without any further configuration.

Writing the Config YAML File

Here’s the modified YAML configuration.

There are two main ways to use HuggingFace models:

  1. Through OpenAILike Interface (Recommended for hosted API endpoints):

nodes:
  - node_line_name: node_line_1
    nodes:
      - node_type: generator
        modules:
          - module_type: llama_index_llm
            llm: openailike
            model: mistralai/Mistral-7B-Instruct-v0.2
            api_base: your_api_base
            api_key: your_api_key
  1. Through Direct HuggingFace Integration (For local deployment):

nodes:
  - node_line_name: node_line_1
    nodes:
      - node_type: generator
        modules:
          - module_type: llama_index_llm
            llm: huggingface
            model_name: mistralai/Mistral-7B-Instruct-v0.2
            device_map: "auto"
            model_kwargs:
              torch_dtype: "float16"

Running AutoRAG

Before running AutoRAG, make sure you have your QA dataset and corpus dataset ready. If you want to know how to make it, visit here.

Run AutoRAG with the following command:

autorag evaluate \
 - qa_data_path ./path/to/qa.parquet \
 - corpus_data_path ./path/to/corpus.parquet \
 - project_dir ./path/to/project_dir \
 - config ./path/to/hf_config.yaml

AutoRAG will automatically experiment and optimize RAG.