Strategy¶
Overview¶
From version 0.2.0 of AutoRAG, a new strategy option has been introduced to enhance the evaluation and selection of the best module. Users can now choose between two methods: mean and rank. This document explains the new strategy parameter, its options, and how to configure it.
Strategy Parameter¶
The strategy parameter specifies the method used to evaluate and select the best module based on the defined metrics. The options are:
mean: The default method. It calculates the mean value of all specified metrics for each module and compares these mean values to determine the best module.
rank: This method ranks each module’s results per metric, calculates the reciprocal rank, and selects the best module based on these rank results.
normalize mean: This method normalizes each metric value across modules to a common scale and then determines the best module.
Configuration¶
To use the new strategy parameter, include it in the strategy section of your YAML configuration file.
Example Configuration Using mean Strategy¶
node_lines:
- node_line_name: example_node_line_1
nodes:
- node_type: retrieval
top_k: 10
strategy:
metrics: [ bleu, meteor, rouge ]
speed_threshold: 10
strategy: mean
Example Configuration Using rank Strategy¶
node_lines:
- node_line_name: example_node_line_2
nodes:
- node_type: retrieval
top_k: 5
strategy:
metrics: [ retrieval_precision, retrieval_recall ]
speed_threshold: 5
strategy: rank
Example Configuration Using Normalize Mean Strategy¶
node_lines:
- node_line_name: example_node_line_2
nodes:
- node_type: retrieval
top_k: 5
strategy:
metrics: [ retrieval_precision, retrieval_recall ]
speed_threshold: 5
strategy: normalize_mean
Tip
For more information, go to custom config and optimization docs.