Strategy

Overview

From version 0.2.0 of AutoRAG, a new strategy option has been introduced to enhance the evaluation and selection of the best module. Users can now choose between two methods: mean and rank. This document explains the new strategy parameter, its options, and how to configure it.

Strategy Parameter

The strategy parameter specifies the method used to evaluate and select the best module based on the defined metrics. The options are:

  • mean: The default method. It calculates the mean value of all specified metrics for each module and compares these mean values to determine the best module.

  • rank: This method ranks each module’s results per metric, calculates the reciprocal rank, and selects the best module based on these rank results.

  • normalize mean: This method normalizes each metric value across modules to a common scale and then determines the best module.

Configuration

To use the new strategy parameter, include it in the strategy section of your YAML configuration file.

Example Configuration Using mean Strategy

node_lines:
  - node_line_name: example_node_line_1
    nodes:
      - node_type: retrieval
        top_k: 10
        strategy:
          metrics: [ bleu, meteor, rouge ]
          speed_threshold: 10
          strategy: mean

Example Configuration Using rank Strategy

node_lines:
  - node_line_name: example_node_line_2
    nodes:
      - node_type: retrieval
        top_k: 5
        strategy:
          metrics: [ retrieval_precision, retrieval_recall ]
          speed_threshold: 5
          strategy: rank

Example Configuration Using Normalize Mean Strategy

node_lines:
  - node_line_name: example_node_line_2
    nodes:
      - node_type: retrieval
        top_k: 5
        strategy:
          metrics: [ retrieval_precision, retrieval_recall ]
          speed_threshold: 5
          strategy: normalize_mean

Tip

For more information, go to custom config and optimization docs.