Source code for autorag.data.chunk.langchain_chunk

import os
from itertools import chain
import uuid
from typing import Tuple, List, Dict, Any, Optional

from langchain_text_splitters import TextSplitter

from autorag.data.chunk.base import chunker_node, add_file_name
from autorag.data.utils.util import add_essential_metadata, get_start_end_idx


[docs] @chunker_node def langchain_chunk( texts: List[str], chunker: TextSplitter, file_name_language: Optional[str] = None, metadata_list: Optional[List[Dict[str, str]]] = None, ) -> Tuple[ List[str], List[str], List[str], List[Tuple[int, int]], List[Dict[str, Any]] ]: """ Chunk texts from the parsed result to use langchain chunk method :param texts: The list of texts to chunk from the parsed result :param chunker: A langchain TextSplitter(Chunker) instance. :param file_name_language: The language to use 'add_file_name' feature. You need to set one of 'English' and 'Korean' The 'add_file_name' feature is to add a file_name to chunked_contents. This is used to prevent hallucination by retrieving contents from the wrong document. Default form of 'English' is "file_name: {file_name}\n contents: {content}" :param metadata_list: The list of dict of metadata from the parsed result :return: tuple of lists containing the chunked doc_id, contents, path, start_idx, end_idx and metadata """ results = [ langchain_chunk_pure(text, chunker, file_name_language, meta) for text, meta in zip(texts, metadata_list) ] doc_id, contents, path, start_end_idx, metadata = ( list(chain.from_iterable(item)) for item in zip(*results) ) return doc_id, contents, path, start_end_idx, metadata
[docs] def langchain_chunk_pure( text: str, chunker: TextSplitter, file_name_language: Optional[str] = None, _metadata: Optional[Dict[str, str]] = None, ): # chunk chunk_results = chunker.create_documents([text], metadatas=[_metadata]) # make doc_id doc_id = list(str(uuid.uuid4()) for _ in range(len(chunk_results))) # make path path_lst = list(map(lambda x: x.metadata.get("path", ""), chunk_results)) # make contents and start_end_idx if file_name_language: chunked_file_names = list(map(lambda x: os.path.basename(x), path_lst)) chunked_texts = list(map(lambda x: x.page_content, chunk_results)) start_end_idx = list(map(lambda x: get_start_end_idx(text, x), chunked_texts)) contents = add_file_name(file_name_language, chunked_file_names, chunked_texts) else: contents = list(map(lambda node: node.page_content, chunk_results)) start_end_idx = list(map(lambda x: get_start_end_idx(text, x), contents)) # make metadata metadata = list( map(lambda node: add_essential_metadata(node.metadata), chunk_results) ) return doc_id, contents, path_lst, start_end_idx, metadata