Source code for autorag.data.legacy.corpus.llama_index

import uuid
from typing import List, Optional

import pandas as pd
from llama_index.core import Document
from llama_index.core.schema import TextNode

from autorag.data.utils.util import (
	add_essential_metadata,
	add_essential_metadata_llama_text_node,
)
from autorag.utils.util import save_parquet_safe


[docs] def llama_documents_to_parquet( llama_documents: List[Document], output_filepath: Optional[str] = None, upsert: bool = False, ) -> pd.DataFrame: """ Llama Index documents to corpus dataframe. Corpus dataframe will be saved to filepath(file_dir/filename) if given. Return corpus dataframe whether the filepath is given. You can use this method to create corpus.parquet after load and chunk using Llama Index. :param llama_documents: List[Document] :param output_filepath: Optional filepath to save the parquet file. If None, the function will return the processed_data as pd.DataFrame, but do not save as parquet. File directory must exist. File extension must be .parquet :param upsert: If true, the function will overwrite the existing file if it exists. Default is False. :return: Corpus data as pd.DataFrame """ doc_lst = pd.DataFrame( list( map( lambda doc: { "doc_id": str(uuid.uuid4()), "contents": doc.text, "metadata": add_essential_metadata(doc.metadata), }, llama_documents, ) ) ) processed_df = pd.DataFrame(doc_lst) if output_filepath is not None: save_parquet_safe(processed_df, output_filepath, upsert=upsert) return processed_df
[docs] def llama_text_node_to_parquet( text_nodes: List[TextNode], output_filepath: Optional[str] = None, upsert: bool = False, ) -> pd.DataFrame: """ Llama Index text nodes to corpus dataframe. Corpus dataframe will be saved to filepath(file_dir/filename) if given. Return corpus dataframe whether the filepath is given. You can use this method to create corpus.parquet after load and chunk using Llama Index. :param text_nodes: List of llama index text nodes. :param output_filepath: Optional filepath to save the parquet file. If None, the function will return the processed_data as pd.DataFrame, but do not save as parquet. File directory must exist. File extension must be .parquet :param upsert: If true, the function will overwrite the existing file if it exists. Default is False. :return: Corpus data as pd.DataFrame """ corpus_df = pd.DataFrame( list( map( lambda node: { "doc_id": node.node_id, "contents": node.text, "metadata": add_essential_metadata_llama_text_node( node.metadata, node.relationships ), }, text_nodes, ) ) ) if output_filepath is not None: save_parquet_safe(corpus_df, output_filepath, upsert=upsert) return corpus_df