Source code for autorag.evaluation.retrieval_contents

import functools
from typing import List, Callable, Any, Tuple

import pandas as pd

from autorag.evaluation.metric import (
	retrieval_token_f1,
	retrieval_token_precision,
	retrieval_token_recall,
)
from autorag.schema.metricinput import MetricInput


[docs] def evaluate_retrieval_contents(metric_inputs: List[MetricInput], metrics: List[str]): def decorator_evaluate_retrieval_contents( func: Callable[ [Any], Tuple[List[List[str]], List[List[str]], List[List[float]]] ], ): """ Decorator for evaluating retrieval contents. You can use this decorator to any method that returns (contents, scores, ids), which is the output of conventional retrieval modules. :param func: Must return (contents, scores, ids) :return: pd.DataFrame, which is the evaluation result and function result. """ @functools.wraps(func) def wrapper(*args, **kwargs) -> pd.DataFrame: contents, pred_ids, scores = func(*args, **kwargs) metric_funcs = { retrieval_token_recall.__name__: retrieval_token_recall, retrieval_token_precision.__name__: retrieval_token_precision, retrieval_token_f1.__name__: retrieval_token_f1, } for metric_input, content in zip(metric_inputs, contents): metric_input.retrieved_contents = content metrics_scores = {} for metric in metrics: if metric not in metric_funcs: raise ValueError( f"metric {metric} is not in supported metrics: {metric_funcs.keys()}" ) else: metric_func = metric_funcs[metric] # Extract each required field from all payloads metric_scores = metric_func(metric_inputs=metric_inputs) metrics_scores[metric] = metric_scores metric_result_df = pd.DataFrame(metrics_scores) execution_result_df = pd.DataFrame( { "retrieved_contents": contents, "retrieved_ids": pred_ids, "retrieve_scores": scores, } ) result_df = pd.concat([execution_result_df, metric_result_df], axis=1) return result_df return wrapper return decorator_evaluate_retrieval_contents