Source code for autorag.evaluation.util

from copy import deepcopy
from typing import Union, List, Dict, Tuple, Any

from autorag.embedding.base import embedding_models


[docs] def cast_metrics( metrics: Union[List[str], List[Dict]], ) -> Tuple[List[str], List[Dict[str, Any]]]: """ Turn metrics to list of metric names and parameter list. :param metrics: List of string or dictionary. :return: The list of metric names and dictionary list of metric parameters. """ metrics_copy = deepcopy(metrics) if not isinstance(metrics_copy, list): raise ValueError("metrics must be a list of string or dictionary.") if isinstance(metrics_copy[0], str): return metrics_copy, [{} for _ in metrics_copy] elif isinstance(metrics_copy[0], dict): # pop 'metric_name' key from dictionary metric_names = list(map(lambda x: x.pop("metric_name"), metrics_copy)) metric_params = [ dict( map( lambda x, y: cast_embedding_model(x, y), metric.keys(), metric.values(), ) ) for metric in metrics_copy ] return metric_names, metric_params else: raise ValueError("metrics must be a list of string or dictionary.")
[docs] def cast_embedding_model(key, value): if key == "embedding_model": return key, embedding_models[value]() else: return key, value