Source code for autorag.nodes.passageaugmenter.run

import logging
import os
import pathlib
from typing import List, Dict

import pandas as pd

from autorag.nodes.retrieval.run import evaluate_retrieval_node
from autorag.schema.metricinput import MetricInput
from autorag.strategy import measure_speed, filter_by_threshold, select_best
from autorag.utils.util import apply_recursive, to_list

logger = logging.getLogger("AutoRAG")


[docs] def run_passage_augmenter_node( modules: List, module_params: List[Dict], previous_result: pd.DataFrame, node_line_dir: str, strategies: Dict, ) -> pd.DataFrame: if not os.path.exists(node_line_dir): os.makedirs(node_line_dir) project_dir = pathlib.PurePath(node_line_dir).parent.parent qa_df = pd.read_parquet( os.path.join(project_dir, "data", "qa.parquet"), engine="pyarrow" ) retrieval_gt = qa_df["retrieval_gt"].tolist() retrieval_gt = apply_recursive(lambda x: str(x), to_list(retrieval_gt)) results, execution_times = zip( *map( lambda task: measure_speed( task[0].run_evaluator, project_dir=project_dir, previous_result=previous_result, **task[1], ), zip(modules, module_params), ) ) average_times = list(map(lambda x: x / len(results[0]), execution_times)) metric_inputs = [ MetricInput(retrieval_gt=ret_gt, query=query, generation_gt=gen_gt) for ret_gt, query, gen_gt in zip( retrieval_gt, previous_result["query"].tolist(), previous_result["generation_gt"].tolist(), ) ] # run metrics before filtering if strategies.get("metrics") is None: raise ValueError( "You must at least one metrics for passage_augmenter evaluation." ) results = list( map( lambda x: evaluate_retrieval_node( x, metric_inputs, strategies.get("metrics"), ), results, ) ) # save results to folder save_dir = os.path.join(node_line_dir, "passage_augmenter") # node name if not os.path.exists(save_dir): os.makedirs(save_dir) filepaths = list( map(lambda x: os.path.join(save_dir, f"{x}.parquet"), range(len(modules))) ) list( map(lambda x: x[0].to_parquet(x[1], index=False), zip(results, filepaths)) ) # execute save to parquet filenames = list(map(lambda x: os.path.basename(x), filepaths)) summary_df = pd.DataFrame( { "filename": filenames, "module_name": list(map(lambda module: module.__name__, modules)), "module_params": module_params, "execution_time": average_times, **{ f"passage_augmenter_{metric}": list( map(lambda result: result[metric].mean(), results) ) for metric in strategies.get("metrics") }, } ) # filter by strategies if strategies.get("speed_threshold") is not None: results, filenames = filter_by_threshold( results, average_times, strategies["speed_threshold"], filenames ) selected_result, selected_filename = select_best( results, strategies.get("metrics"), filenames, strategies.get("strategy", "mean"), ) # change metric name columns to passage_augmenter_metric_name selected_result = selected_result.rename( columns={ metric_name: f"passage_augmenter_{metric_name}" for metric_name in strategies["metrics"] } ) # drop retrieval result columns in previous_result previous_result = previous_result.drop( columns=["retrieved_contents", "retrieved_ids", "retrieve_scores"] ) best_result = pd.concat([previous_result, selected_result], axis=1) # add 'is_best' column to summary file summary_df["is_best"] = summary_df["filename"] == selected_filename # save files summary_df.to_csv(os.path.join(save_dir, "summary.csv"), index=False) best_result.to_parquet( os.path.join( save_dir, f"best_{os.path.splitext(selected_filename)[0]}.parquet" ), index=False, ) return best_result