import os.path
import pathlib
from typing import List, Dict
import pandas as pd
from autorag.evaluation.metric import (
retrieval_token_recall,
retrieval_token_precision,
retrieval_token_f1,
)
from autorag.schema.metricinput import MetricInput
from autorag.strategy import measure_speed, filter_by_threshold, select_best
from autorag.utils.util import fetch_contents
[docs]
def run_passage_compressor_node(
modules: List,
module_params: List[Dict],
previous_result: pd.DataFrame,
node_line_dir: str,
strategies: Dict,
) -> pd.DataFrame:
"""
Run evaluation and select the best module among passage compressor modules.
:param modules: Passage compressor modules to run.
:param module_params: Passage compressor module parameters.
:param previous_result: Previous result dataframe.
Could be retrieval, reranker modules result.
It means it must contain 'query', 'retrieved_contents', 'retrieved_ids', 'retrieve_scores' columns.
:param node_line_dir: This node line's directory.
:param strategies: Strategies for passage compressor node.
In this node, we use
You can skip evaluation when you use only one module and a module parameter.
:return: The best result dataframe with previous result columns.
This node will replace 'retrieved_contents' to compressed passages, so its length will be one.
"""
if not os.path.exists(node_line_dir):
os.makedirs(node_line_dir)
project_dir = pathlib.PurePath(node_line_dir).parent.parent
data_dir = os.path.join(project_dir, "data")
save_dir = os.path.join(node_line_dir, "passage_compressor")
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# make retrieval contents gt
qa_data = pd.read_parquet(os.path.join(data_dir, "qa.parquet"), engine="pyarrow")
corpus_data = pd.read_parquet(
os.path.join(data_dir, "corpus.parquet"), engine="pyarrow"
)
# check qa_data have retrieval_gt
assert all(
len(x[0]) > 0 for x in qa_data["retrieval_gt"].tolist()
), "Can't use passage compressor if you don't have retrieval gt values in QA dataset."
# run modules
results, execution_times = zip(
*map(
lambda task: measure_speed(
task[0].run_evaluator,
project_dir=project_dir,
previous_result=previous_result,
**task[1],
),
zip(modules, module_params),
)
)
results = list(results)
average_times = list(map(lambda x: x / len(results[0]), execution_times))
retrieval_gt_contents = list(
map(lambda x: fetch_contents(corpus_data, x), qa_data["retrieval_gt"].tolist())
)
metric_inputs = [
MetricInput(retrieval_gt_contents=ret_cont_gt)
for ret_cont_gt in retrieval_gt_contents
]
# run metrics before filtering
if strategies.get("metrics") is None:
raise ValueError(
"You must at least one metrics for retrieval contents evaluation."
"It can be 'retrieval_token_f1', 'retrieval_token_precision', 'retrieval_token_recall'."
)
results = list(
map(
lambda x: evaluate_passage_compressor_node(
x, metric_inputs, strategies.get("metrics")
),
results,
)
)
# save results to folder
filepaths = list(
map(lambda x: os.path.join(save_dir, f"{x}.parquet"), range(len(modules)))
)
list(
map(lambda x: x[0].to_parquet(x[1], index=False), zip(results, filepaths))
) # execute save to parquet
filenames = list(map(lambda x: os.path.basename(x), filepaths))
# make summary file
summary_df = pd.DataFrame(
{
"filename": filenames,
"module_name": list(map(lambda module: module.__name__, modules)),
"module_params": module_params,
"execution_time": average_times,
**{
f"passage_compressor_{metric}": list(
map(lambda result: result[metric].mean(), results)
)
for metric in strategies.get("metrics")
},
}
)
# filter by strategies
if strategies.get("speed_threshold") is not None:
results, filenames = filter_by_threshold(
results, average_times, strategies["speed_threshold"], filenames
)
selected_result, selected_filename = select_best(
results,
strategies.get("metrics"),
filenames,
strategies.get("strategy", "mean"),
)
new_retrieved_contents = selected_result["retrieved_contents"]
previous_result["retrieved_contents"] = new_retrieved_contents
selected_result = selected_result.drop(columns=["retrieved_contents"])
best_result = pd.concat([previous_result, selected_result], axis=1)
# add 'is_best' column to summary file
summary_df["is_best"] = summary_df["filename"] == selected_filename
# add prefix 'passage_compressor' to best_result columns
best_result = best_result.rename(
columns={
metric_name: f"passage_compressor_{metric_name}"
for metric_name in strategies.get("metrics")
}
)
# save the result files
best_result.to_parquet(
os.path.join(
save_dir, f"best_{os.path.splitext(selected_filename)[0]}.parquet"
),
index=False,
)
summary_df.to_csv(os.path.join(save_dir, "summary.csv"), index=False)
return best_result
[docs]
def evaluate_passage_compressor_node(
result_df: pd.DataFrame, metric_inputs: List[MetricInput], metrics: List[str]
):
metric_funcs = {
retrieval_token_recall.__name__: retrieval_token_recall,
retrieval_token_precision.__name__: retrieval_token_precision,
retrieval_token_f1.__name__: retrieval_token_f1,
}
for metric_input, generated_text in zip(
metric_inputs, result_df["retrieved_contents"].tolist()
):
metric_input.retrieved_contents = generated_text
metrics = list(filter(lambda x: x in metric_funcs.keys(), metrics))
if len(metrics) <= 0:
raise ValueError(f"metrics must be one of {metric_funcs.keys()}")
metrics_scores = dict(
map(
lambda metric: (
metric,
metric_funcs[metric](
metric_inputs=metric_inputs,
),
),
metrics,
)
)
result_df = pd.concat([result_df, pd.DataFrame(metrics_scores)], axis=1)
return result_df