Source code for autorag.nodes.passagereranker.koreranker

from typing import List, Tuple

import numpy as np
import pandas as pd

from autorag.nodes.passagereranker.base import BasePassageReranker
from autorag.utils.util import (
	make_batch,
	sort_by_scores,
	flatten_apply,
	select_top_k,
	result_to_dataframe,
	empty_cuda_cache,
)


[docs] class KoReranker(BasePassageReranker): def __init__(self, project_dir: str, *args, **kwargs): super().__init__(project_dir) try: import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer except ImportError: raise ImportError("For using KoReranker, please install torch first.") model_path = "Dongjin-kr/ko-reranker" self.tokenizer = AutoTokenizer.from_pretrained(model_path) self.model = AutoModelForSequenceClassification.from_pretrained(model_path) self.model.eval() # Determine the device to run the model on (GPU if available, otherwise CPU) self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.model.to(self.device) def __del__(self): del self.model empty_cuda_cache() super().__del__()
[docs] @result_to_dataframe(["retrieved_contents", "retrieved_ids", "retrieve_scores"]) def pure(self, previous_result: pd.DataFrame, *args, **kwargs): queries, contents, _, ids = self.cast_to_run(previous_result) top_k = kwargs.pop("top_k") batch = kwargs.pop("batch", 64) return self._pure(queries, contents, ids, top_k, batch)
def _pure( self, queries: List[str], contents_list: List[List[str]], ids_list: List[List[str]], top_k: int, batch: int = 64, ) -> Tuple[List[List[str]], List[List[str]], List[List[float]]]: """ Rerank a list of contents based on their relevance to a query using ko-reranker. ko-reranker is a reranker based on korean (https://huggingface.co/Dongjin-kr/ko-reranker). :param queries: The list of queries to use for reranking :param contents_list: The list of lists of contents to rerank :param ids_list: The list of lists of ids retrieved from the initial ranking :param top_k: The number of passages to be retrieved :param batch: The number of queries to be processed in a batch Default is 64. :return: Tuple of lists containing the reranked contents, ids, and scores """ nested_list = [ list(map(lambda x: [query, x], content_list)) for query, content_list in zip(queries, contents_list) ] scores_nps = flatten_apply( koreranker_run_model, nested_list, model=self.model, batch_size=batch, tokenizer=self.tokenizer, device=self.device, ) rerank_scores = list( map( lambda scores: exp_normalize(np.array(scores)).astype(float), scores_nps ) ) df = pd.DataFrame( { "contents": contents_list, "ids": ids_list, "scores": rerank_scores, } ) df[["contents", "ids", "scores"]] = df.apply( sort_by_scores, axis=1, result_type="expand" ) results = select_top_k(df, ["contents", "ids", "scores"], top_k) return ( results["contents"].tolist(), results["ids"].tolist(), results["scores"].tolist(), )
[docs] def koreranker_run_model(input_texts, model, tokenizer, device, batch_size: int): try: import torch except ImportError: raise ImportError("For using KoReranker, please install torch first.") batch_input_texts = make_batch(input_texts, batch_size) results = [] for batch_texts in batch_input_texts: inputs = tokenizer( batch_texts, padding=True, truncation=True, return_tensors="pt", max_length=512, ) inputs = inputs.to(device) with torch.no_grad(): scores = ( model(**inputs, return_dict=True) .logits.view( -1, ) .float() ) scores_np = scores.cpu().numpy() results.extend(scores_np) return results
[docs] def exp_normalize(x): b = x.max() y = np.exp(x - b) return y / y.sum()