Source code for autorag.nodes.passagereranker.mixedbreadai

import os
from typing import List, Tuple

import pandas as pd
from mixedbread_ai.client import AsyncMixedbreadAI

from autorag.nodes.passagereranker.base import BasePassageReranker
from autorag.utils.util import (
	result_to_dataframe,
	get_event_loop,
	process_batch,
	pop_params,
)


[docs] class MixedbreadAIReranker(BasePassageReranker): def __init__( self, project_dir: str, *args, **kwargs, ): """ Initialize mixedbread-ai rerank node. :param project_dir: The project directory path. :param api_key: The API key for MixedbreadAI rerank. You can set it in the environment variable MXBAI_API_KEY. Or, you can directly set it on the config YAML file using this parameter. Default is env variable "MXBAI_API_KEY". :param kwargs: Extra arguments that are not affected """ super().__init__(project_dir) api_key = kwargs.pop("api_key", None) api_key = os.getenv("MXBAI_API_KEY", None) if api_key is None else api_key if api_key is None: raise KeyError( "Please set the API key for Mixedbread AI rerank in the environment variable MXBAI_API_KEY " "or directly set it on the config YAML file." ) self.client = AsyncMixedbreadAI(api_key=api_key) def __del__(self): del self.client super().__del__()
[docs] @result_to_dataframe(["retrieved_contents", "retrieved_ids", "retrieve_scores"]) def pure(self, previous_result: pd.DataFrame, *args, **kwargs): queries, contents, scores, ids = self.cast_to_run(previous_result) top_k = kwargs.pop("top_k") batch = kwargs.pop("batch", 8) model = kwargs.pop("model", "mixedbread-ai/mxbai-rerank-large-v1") rerank_params = pop_params(self.client.reranking, kwargs) return self._pure(queries, contents, ids, top_k, model, batch, **rerank_params)
def _pure( self, queries: List[str], contents_list: List[List[str]], ids_list: List[List[str]], top_k: int, model: str = "mixedbread-ai/mxbai-rerank-large-v1", batch: int = 8, ) -> Tuple[List[List[str]], List[List[str]], List[List[float]]]: """ Rerank a list of contents with mixedbread-ai rerank models. You can get the API key from https://www.mixedbread.ai/api-reference#quick-start-guide and set it in the environment variable MXBAI_API_KEY. :param queries: The list of queries to use for reranking :param contents_list: The list of lists of contents to rerank :param ids_list: The list of lists of ids retrieved from the initial ranking :param top_k: The number of passages to be retrieved :param model: The model name for mixedbread-ai rerank. You can choose between "mixedbread-ai/mxbai-rerank-large-v1", "mixedbread-ai/mxbai-rerank-base-v1" and "mixedbread-ai/mxbai-rerank-xsmall-v1". Default is "mixedbread-ai/mxbai-rerank-large-v1". :param batch: The number of queries to be processed in a batch :return: Tuple of lists containing the reranked contents, ids, and scores """ tasks = [ mixedbreadai_rerank_pure( self.client, query, contents, ids, top_k=top_k, model=model ) for query, contents, ids in zip(queries, contents_list, ids_list) ] loop = get_event_loop() results = loop.run_until_complete(process_batch(tasks, batch)) content_result, id_result, score_result = zip(*results) return list(content_result), list(id_result), list(score_result)
[docs] async def mixedbreadai_rerank_pure( client: AsyncMixedbreadAI, query: str, documents: List[str], ids: List[str], top_k: int, model: str = "mixedbread-ai/mxbai-rerank-large-v1", ) -> Tuple[List[str], List[str], List[float]]: """ Rerank a list of contents with mixedbread-ai rerank models. :param client: The mixedbread-ai client to use for reranking :param query: The query to use for reranking :param documents: The list of contents to rerank :param ids: The list of ids corresponding to the documents :param top_k: The number of passages to be retrieved :param model: The model name for mixedbread-ai rerank. You can choose between "mixedbread-ai/mxbai-rerank-large-v1" and "mixedbread-ai/mxbai-rerank-base-v1". Default is "mixedbread-ai/mxbai-rerank-large-v1". :return: Tuple of lists containing the reranked contents, ids, and scores """ results = await client.reranking( query=query, input=documents, top_k=top_k, model=model, ) reranked_scores: List[float] = list(map(lambda x: x.score, results.data)) reranked_scores_float = list(map(float, reranked_scores)) indices = list(map(lambda x: x.index, results.data)) reranked_contents = list(map(lambda x: documents[x], indices)) reranked_ids: List[str] = list(map(lambda i: ids[i], indices)) return reranked_contents, reranked_ids, reranked_scores_float