Source code for autorag.nodes.passagereranker.monot5

from itertools import chain
from typing import List, Tuple

import pandas as pd

from autorag.nodes.passagereranker.base import BasePassageReranker
from autorag.utils.util import (
	make_batch,
	sort_by_scores,
	flatten_apply,
	select_top_k,
	result_to_dataframe,
	pop_params,
	empty_cuda_cache,
)

prediction_tokens = {
	"castorini/monot5-base-msmarco": ["▁false", "▁true"],
	"castorini/monot5-base-msmarco-10k": ["▁false", "▁true"],
	"castorini/monot5-large-msmarco": ["▁false", "▁true"],
	"castorini/monot5-large-msmarco-10k": ["▁false", "▁true"],
	"castorini/monot5-base-med-msmarco": ["▁false", "▁true"],
	"castorini/monot5-3b-med-msmarco": ["▁false", "▁true"],
	"castorini/monot5-3b-msmarco-10k": ["▁false", "▁true"],
	"unicamp-dl/mt5-base-en-msmarco": ["▁no", "▁yes"],
	"unicamp-dl/ptt5-base-pt-msmarco-10k-v2": ["▁não", "▁sim"],
	"unicamp-dl/ptt5-base-pt-msmarco-100k-v2": ["▁não", "▁sim"],
	"unicamp-dl/ptt5-base-en-pt-msmarco-100k-v2": ["▁não", "▁sim"],
	"unicamp-dl/mt5-base-en-pt-msmarco-v2": ["▁no", "▁yes"],
	"unicamp-dl/mt5-base-mmarco-v2": ["▁no", "▁yes"],
	"unicamp-dl/mt5-base-en-pt-msmarco-v1": ["▁no", "▁yes"],
	"unicamp-dl/mt5-base-mmarco-v1": ["▁no", "▁yes"],
	"unicamp-dl/ptt5-base-pt-msmarco-10k-v1": ["▁não", "▁sim"],
	"unicamp-dl/ptt5-base-pt-msmarco-100k-v1": ["▁não", "▁sim"],
	"unicamp-dl/ptt5-base-en-pt-msmarco-10k-v1": ["▁não", "▁sim"],
	"unicamp-dl/mt5-3B-mmarco-en-pt": ["▁", "▁true"],
	"unicamp-dl/mt5-13b-mmarco-100k": ["▁", "▁true"],
}


[docs] class MonoT5(BasePassageReranker): def __init__( self, project_dir: str, model_name: str = "castorini/monot5-3b-msmarco-10k", *args, **kwargs, ): """ Initialize the MonoT5 reranker. :param project_dir: The project directory :param model_name: The name of the MonoT5 model to use for reranking Note: default model name is 'castorini/monot5-3b-msmarco-10k' If there is a '/' in the model name parameter, when we create the file to store the results, the path will be twisted because of the '/'. Therefore, it will be received as '_' instead of '/'. :param kwargs: The extra arguments for the MonoT5 reranker """ super().__init__(project_dir) try: import torch from transformers import T5Tokenizer, T5ForConditionalGeneration except ImportError: raise ImportError("For using MonoT5 Reranker, please install torch first.") # replace '_' to '/' if "_" in model_name: model_name = model_name.replace("_", "/") # Load the tokenizer and model from the pre-trained MonoT5 model self.tokenizer = T5Tokenizer.from_pretrained(model_name) model_params = pop_params(T5ForConditionalGeneration.from_pretrained, kwargs) self.model = T5ForConditionalGeneration.from_pretrained( model_name, **model_params ).eval() # Determine the device to run the model on (GPU if available, otherwise CPU) self.device = "cuda" if torch.cuda.is_available() else "cpu" self.model.to(self.device) token_false, token_true = prediction_tokens[model_name] self.token_false_id = self.tokenizer.convert_tokens_to_ids(token_false) self.token_true_id = self.tokenizer.convert_tokens_to_ids(token_true) def __del__(self): del self.model del self.tokenizer empty_cuda_cache() super().__del__()
[docs] @result_to_dataframe(["retrieved_contents", "retrieved_ids", "retrieve_scores"]) def pure(self, previous_result: pd.DataFrame, *args, **kwargs): queries, contents, _, ids = self.cast_to_run(previous_result) top_k = kwargs.get("top_k", 3) batch = kwargs.get("batch", 64) return self._pure(queries, contents, ids, top_k, batch)
def _pure( self, queries: List[str], contents_list: List[List[str]], ids_list: List[List[str]], top_k: int, batch: int = 64, ) -> Tuple[List[List[str]], List[List[str]], List[List[float]]]: """ Rerank a list of contents based on their relevance to a query using MonoT5. :param queries: The list of queries to use for reranking :param contents_list: The list of lists of contents to rerank :param ids_list: The list of lists of ids retrieved from the initial ranking :param top_k: The number of passages to be retrieved :param batch: The number of queries to be processed in a batch :return: tuple of lists containing the reranked contents, ids, and scores """ # Retrieve the tokens used by the model to represent false and true predictions nested_list = [ list(map(lambda x: [f"Query: {query} Document: {x}"], content_list)) for query, content_list in zip(queries, contents_list) ] rerank_scores = flatten_apply( monot5_run_model, nested_list, model=self.model, batch_size=batch, tokenizer=self.tokenizer, device=self.device, token_false_id=self.token_false_id, token_true_id=self.token_true_id, ) df = pd.DataFrame( { "contents": contents_list, "ids": ids_list, "scores": rerank_scores, } ) df[["contents", "ids", "scores"]] = df.apply( sort_by_scores, axis=1, result_type="expand" ) results = select_top_k(df, ["contents", "ids", "scores"], top_k) return ( results["contents"].tolist(), results["ids"].tolist(), results["scores"].tolist(), )
[docs] def monot5_run_model( input_texts, model, batch_size: int, tokenizer, device, token_false_id, token_true_id, ): try: import torch except ImportError: raise ImportError("For using MonoT5 Reranker, please install torch first.") batch_input_texts = make_batch(input_texts, batch_size) results = [] for batch_texts in batch_input_texts: flattened_batch_texts = list(chain.from_iterable(batch_texts)) input_encodings = tokenizer( flattened_batch_texts, padding=True, truncation=True, max_length=512, return_tensors="pt", ).to(device) with torch.no_grad(): outputs = model.generate( input_ids=input_encodings["input_ids"], attention_mask=input_encodings["attention_mask"], output_scores=True, return_dict_in_generate=True, ) # Extract logits for the 'false' and 'true' tokens from the model's output logits = outputs.scores[-1][:, [token_false_id, token_true_id]] # Calculate the softmax probability of the 'true' token probs = torch.nn.functional.softmax(logits, dim=-1)[:, 1] results.extend(probs.tolist()) return results