Source code for autorag.nodes.passagereranker.sentence_transformer

from typing import List, Tuple

import pandas as pd

from autorag.nodes.passagereranker.base import BasePassageReranker
from autorag.utils.util import (
	flatten_apply,
	make_batch,
	select_top_k,
	sort_by_scores,
	pop_params,
	result_to_dataframe,
	empty_cuda_cache,
)


[docs] class SentenceTransformerReranker(BasePassageReranker): def __init__( self, project_dir: str, model_name: str = "cross-encoder/ms-marco-MiniLM-L-2-v2", *args, **kwargs, ): """ Initialize the Sentence Transformer reranker node. :param project_dir: The project directory :param model_name: The name of the Sentence Transformer model to use for reranking Default is "cross-encoder/ms-marco-MiniLM-L-2-v2" :param kwargs: The CrossEncoder parameters """ super().__init__(project_dir, *args, **kwargs) try: import torch from sentence_transformers import CrossEncoder except ImportError: raise ImportError( "You have to install AutoRAG[gpu] to use SentenceTransformerReranker" ) self.device = "cuda" if torch.cuda.is_available() else "cpu" model_params = pop_params(CrossEncoder.__init__, kwargs) self.model = CrossEncoder(model_name, device=self.device, **model_params) def __del__(self): del self.model empty_cuda_cache() super().__del__()
[docs] @result_to_dataframe(["retrieved_contents", "retrieved_ids", "retrieve_scores"]) def pure(self, previous_result: pd.DataFrame, *args, **kwargs): """ Rerank a list of contents based on their relevance to a query using a Sentence Transformer model. :param previous_result: The previous result :param top_k: The number of passages to be retrieved :param batch: The number of queries to be processed in a batch :return: pd DataFrame containing the reranked contents, ids, and scores """ queries, contents_list, scores_list, ids_list = self.cast_to_run( previous_result ) top_k = kwargs.get("top_k", 1) batch = kwargs.get("batch", 64) return self._pure(queries, contents_list, ids_list, top_k, batch)
def _pure( self, queries: List[str], contents_list: List[List[str]], ids_list: List[List[str]], top_k: int, batch: int = 64, ) -> Tuple[List[List[str]], List[List[str]], List[List[float]]]: """ Rerank a list of contents based on their relevance to a query using a Sentence Transformer model. :param queries: The list of queries to use for reranking :param contents_list: The list of lists of contents to rerank :param ids_list: The list of lists of ids retrieved from the initial ranking :param top_k: The number of passages to be retrieved :param batch: The number of queries to be processed in a batch :return: tuple of lists containing the reranked contents, ids, and scores """ nested_list = [ list(map(lambda x: [query, x], content_list)) for query, content_list in zip(queries, contents_list) ] rerank_scores = flatten_apply( sentence_transformer_run_model, nested_list, model=self.model, batch_size=batch, ) df = pd.DataFrame( { "contents": contents_list, "ids": ids_list, "scores": rerank_scores, } ) df[["contents", "ids", "scores"]] = df.apply( sort_by_scores, axis=1, result_type="expand" ) results = select_top_k(df, ["contents", "ids", "scores"], top_k) return ( results["contents"].tolist(), results["ids"].tolist(), results["scores"].tolist(), )
[docs] def sentence_transformer_run_model(input_texts, model, batch_size: int): try: import torch except ImportError: raise ImportError( "You have to install AutoRAG[gpu] to use SentenceTransformerReranker" ) batch_input_texts = make_batch(input_texts, batch_size) results = [] for batch_texts in batch_input_texts: with torch.no_grad(): pred_scores = model.predict(sentences=batch_texts, apply_softmax=True) results.extend(pred_scores.tolist()) return results