Source code for autorag.nodes.passagereranker.sentence_transformer
from typing import List, Tuple
import pandas as pd
from autorag.nodes.passagereranker.base import BasePassageReranker
from autorag.utils.util import (
flatten_apply,
make_batch,
select_top_k,
sort_by_scores,
pop_params,
result_to_dataframe,
empty_cuda_cache,
)
[docs]
class SentenceTransformerReranker(BasePassageReranker):
def __init__(
self,
project_dir: str,
model_name: str = "cross-encoder/ms-marco-MiniLM-L-2-v2",
*args,
**kwargs,
):
"""
Initialize the Sentence Transformer reranker node.
:param project_dir: The project directory
:param model_name: The name of the Sentence Transformer model to use for reranking
Default is "cross-encoder/ms-marco-MiniLM-L-2-v2"
:param kwargs: The CrossEncoder parameters
"""
super().__init__(project_dir, *args, **kwargs)
try:
import torch
from sentence_transformers import CrossEncoder
except ImportError:
raise ImportError(
"You have to install AutoRAG[gpu] to use SentenceTransformerReranker"
)
self.device = "cuda" if torch.cuda.is_available() else "cpu"
model_params = pop_params(CrossEncoder.__init__, kwargs)
self.model = CrossEncoder(model_name, device=self.device, **model_params)
def __del__(self):
del self.model
empty_cuda_cache()
super().__del__()
[docs]
@result_to_dataframe(["retrieved_contents", "retrieved_ids", "retrieve_scores"])
def pure(self, previous_result: pd.DataFrame, *args, **kwargs):
"""
Rerank a list of contents based on their relevance to a query using a Sentence Transformer model.
:param previous_result: The previous result
:param top_k: The number of passages to be retrieved
:param batch: The number of queries to be processed in a batch
:return: pd DataFrame containing the reranked contents, ids, and scores
"""
queries, contents_list, scores_list, ids_list = self.cast_to_run(
previous_result
)
top_k = kwargs.get("top_k", 1)
batch = kwargs.get("batch", 64)
return self._pure(queries, contents_list, ids_list, top_k, batch)
def _pure(
self,
queries: List[str],
contents_list: List[List[str]],
ids_list: List[List[str]],
top_k: int,
batch: int = 64,
) -> Tuple[List[List[str]], List[List[str]], List[List[float]]]:
"""
Rerank a list of contents based on their relevance to a query using a Sentence Transformer model.
:param queries: The list of queries to use for reranking
:param contents_list: The list of lists of contents to rerank
:param ids_list: The list of lists of ids retrieved from the initial ranking
:param top_k: The number of passages to be retrieved
:param batch: The number of queries to be processed in a batch
:return: tuple of lists containing the reranked contents, ids, and scores
"""
nested_list = [
list(map(lambda x: [query, x], content_list))
for query, content_list in zip(queries, contents_list)
]
rerank_scores = flatten_apply(
sentence_transformer_run_model,
nested_list,
model=self.model,
batch_size=batch,
)
df = pd.DataFrame(
{
"contents": contents_list,
"ids": ids_list,
"scores": rerank_scores,
}
)
df[["contents", "ids", "scores"]] = df.apply(
sort_by_scores, axis=1, result_type="expand"
)
results = select_top_k(df, ["contents", "ids", "scores"], top_k)
return (
results["contents"].tolist(),
results["ids"].tolist(),
results["scores"].tolist(),
)
[docs]
def sentence_transformer_run_model(input_texts, model, batch_size: int):
try:
import torch
except ImportError:
raise ImportError(
"You have to install AutoRAG[gpu] to use SentenceTransformerReranker"
)
batch_input_texts = make_batch(input_texts, batch_size)
results = []
for batch_texts in batch_input_texts:
with torch.no_grad():
pred_scores = model.predict(sentences=batch_texts, apply_softmax=True)
results.extend(pred_scores.tolist())
return results