Source code for autorag.nodes.passagereranker.upr

import logging
from typing import List, Tuple

import pandas as pd

from autorag.nodes.passagereranker.base import BasePassageReranker
from autorag.utils import result_to_dataframe
from autorag.utils.util import select_top_k, sort_by_scores, empty_cuda_cache

logger = logging.getLogger("AutoRAG")


[docs] class Upr(BasePassageReranker): def __init__( self, project_dir: str, use_bf16: bool = False, prefix_prompt: str = "Passage: ", suffix_prompt: str = "Please write a question based on this passage.", *args, **kwargs, ): """ Initialize the UPR reranker node. :param project_dir: The project directory :param use_bf16: Whether to use bfloat16 for the model. Default is False. :param prefix_prompt: The prefix prompt for the language model that generates question for reranking. Default is "Passage: ". The prefix prompt serves as the initial context or instruction for the language model. It sets the stage for what is expected in the output :param suffix_prompt: The suffix prompt for the language model that generates question for reranking. Default is "Please write a question based on this passage.". The suffix prompt provides a cue or a closing instruction to the language model, signaling how to conclude the generated text or what format to follow at the end. :param kwargs: Extra arguments """ super().__init__(project_dir, *args, **kwargs) self.scorer = UPRScorer( suffix_prompt=suffix_prompt, prefix_prompt=prefix_prompt, use_bf16=use_bf16 ) def __del__(self): del self.scorer super().__del__()
[docs] @result_to_dataframe(["retrieved_contents", "retrieved_ids", "retrieve_scores"]) def pure(self, previous_result: pd.DataFrame, *args, **kwargs): queries, contents, _, ids = self.cast_to_run(previous_result) top_k = kwargs.pop("top_k") return self._pure(queries, contents, ids, top_k)
def _pure( self, queries: List[str], contents_list: List[List[str]], ids_list: List[List[str]], top_k: int, ) -> Tuple[List[List[str]], List[List[str]], List[List[float]]]: """ Rerank a list of contents based on their relevance to a query using UPR. UPR is a reranker based on UPR (https://github.com/DevSinghSachan/unsupervised-passage-reranking). The language model will make a question based on the passage and rerank the passages by the likelihood of the question. The default model is t5-large. :param queries: The list of queries to use for reranking :param contents_list: The list of lists of contents to rerank :param ids_list: The list of lists of ids retrieved from the initial ranking :param top_k: The number of passages to be retrieved :return: tuple of lists containing the reranked contents, ids, and scores """ df = pd.DataFrame( { "query": queries, "contents": contents_list, "ids": ids_list, } ) df["scores"] = df.apply( lambda row: self.scorer.compute( query=row["query"], contents=row["contents"] ), axis=1, ) df[["contents", "ids", "scores"]] = df.apply( lambda x: sort_by_scores(x, reverse=False), axis=1, result_type="expand" ) results = select_top_k(df, ["contents", "ids", "scores"], top_k) return ( results["contents"].tolist(), results["ids"].tolist(), results["scores"].tolist(), )
[docs] class UPRScorer: def __init__(self, suffix_prompt: str, prefix_prompt: str, use_bf16: bool = False): try: import torch from transformers import T5Tokenizer, T5ForConditionalGeneration except ImportError: raise ImportError( "torch is not installed. Please install torch to use UPRReranker." ) model_name = "t5-large" self.device = "cuda" if torch.cuda.is_available() else "cpu" self.tokenizer = T5Tokenizer.from_pretrained(model_name) self.model = T5ForConditionalGeneration.from_pretrained( model_name, torch_dtype=torch.bfloat16 if use_bf16 else torch.float32 ).to(self.device) self.suffix_prompt = suffix_prompt self.prefix_prompt = prefix_prompt
[docs] def compute(self, query: str, contents: List[str]) -> List[float]: try: import torch except ImportError: raise ImportError( "torch is not installed. Please install torch to use UPRReranker." ) query_token = self.tokenizer( query, max_length=128, truncation=True, return_tensors="pt" ) prompts = list( map( lambda content: f"{self.prefix_prompt} {content} {self.suffix_prompt}", contents, ) ) prompt_token_outputs = self.tokenizer( prompts, padding="longest", max_length=512, pad_to_multiple_of=8, truncation=True, return_tensors="pt", ) query_input_ids = torch.repeat_interleave( query_token["input_ids"], len(contents), dim=0 ).to(self.device) with torch.no_grad(): logits = self.model( input_ids=prompt_token_outputs["input_ids"].to(self.device), attention_mask=prompt_token_outputs["attention_mask"].to(self.device), labels=query_input_ids, ).logits log_softmax = torch.nn.functional.log_softmax(logits, dim=-1) nll = -log_softmax.gather(2, query_input_ids.unsqueeze(2)).squeeze(2) avg_nll = torch.sum(nll, dim=1) return avg_nll.tolist()
def __del__(self): del self.model del self.tokenizer empty_cuda_cache()