Source code for autorag.nodes.passagereranker.voyageai

import os
from typing import List, Tuple
import pandas as pd
import voyageai

from autorag.nodes.passagereranker.base import BasePassageReranker
from autorag.utils.util import result_to_dataframe, get_event_loop, process_batch


[docs] class VoyageAIReranker(BasePassageReranker): def __init__(self, project_dir: str, *args, **kwargs): super().__init__(project_dir) api_key = kwargs.pop("api_key", None) api_key = os.getenv("VOYAGE_API_KEY", None) if api_key is None else api_key if api_key is None: raise KeyError( "Please set the API key for VoyageAI rerank in the environment variable VOYAGE_API_KEY " "or directly set it on the config YAML file." ) self.voyage_client = voyageai.AsyncClient(api_key=api_key) def __del__(self): del self.voyage_client super().__del__()
[docs] @result_to_dataframe(["retrieved_contents", "retrieved_ids", "retrieve_scores"]) def pure(self, previous_result: pd.DataFrame, *args, **kwargs): queries, contents, scores, ids = self.cast_to_run(previous_result) top_k = kwargs.pop("top_k") batch = kwargs.pop("batch", 8) model = kwargs.pop("model", "rerank-2") truncation = kwargs.pop("truncation", True) return self._pure(queries, contents, ids, top_k, model, batch, truncation)
def _pure( self, queries: List[str], contents_list: List[List[str]], ids_list: List[List[str]], top_k: int, model: str = "rerank-2", batch: int = 8, truncation: bool = True, ) -> Tuple[List[List[str]], List[List[str]], List[List[float]]]: """ Rerank a list of contents with VoyageAI rerank models. You can get the API key from https://docs.voyageai.com/docs/api-key-and-installation and set it in the environment variable VOYAGE_API_KEY. :param queries: The list of queries to use for reranking :param contents_list: The list of lists of contents to rerank :param ids_list: The list of lists of ids retrieved from the initial ranking :param top_k: The number of passages to be retrieved :param model: The model name for VoyageAI rerank. You can choose between "rerank-2" and "rerank-2-lite". Default is "rerank-2". :param batch: The number of queries to be processed in a batch :param truncation: Whether to truncate the input to satisfy the 'context length limit' on the query and the documents. :return: Tuple of lists containing the reranked contents, ids, and scores """ tasks = [ voyageai_rerank_pure( self.voyage_client, model, query, contents, ids, top_k, truncation ) for query, contents, ids in zip(queries, contents_list, ids_list) ] loop = get_event_loop() results = loop.run_until_complete(process_batch(tasks, batch)) content_result, id_result, score_result = zip(*results) return list(content_result), list(id_result), list(score_result)
[docs] async def voyageai_rerank_pure( voyage_client: voyageai.AsyncClient, model: str, query: str, documents: List[str], ids: List[str], top_k: int, truncation: bool = True, ) -> Tuple[List[str], List[str], List[float]]: """ Rerank a list of contents with VoyageAI rerank models. :param voyage_client: The Voyage Client to use for reranking :param model: The model name for VoyageAI rerank :param query: The query to use for reranking :param documents: The list of contents to rerank :param ids: The list of ids corresponding to the documents :param top_k: The number of passages to be retrieved :param truncation: Whether to truncate the input to satisfy the 'context length limit' on the query and the documents. :return: Tuple of lists containing the reranked contents, ids, and scores """ rerank_results = await voyage_client.rerank( model=model, query=query, documents=documents, top_k=top_k, truncation=truncation, ) reranked_scores: List[float] = list( map(lambda x: x.relevance_score, rerank_results.results) ) indices = list(map(lambda x: x.index, rerank_results.results)) reranked_contents: List[str] = list(map(lambda i: documents[i], indices)) reranked_ids: List[str] = list(map(lambda i: ids[i], indices)) return reranked_contents, reranked_ids, reranked_scores