Source code for autorag.support

import importlib
from typing import Callable, Dict


[docs] def dynamically_find_function(key: str, target_dict: Dict) -> Callable: if key in target_dict: module_path, func_name = target_dict[key] module = importlib.import_module(module_path) func = getattr(module, func_name) return func else: raise KeyError(f"Input module or node {key} is not supported.")
[docs] def get_support_modules(module_name: str) -> Callable: support_modules = { # parse "langchain_parse": ("autorag.data.parse", "langchain_parse"), "clova": ("autorag.data.parse.clova", "clova_ocr"), "llamaparse": ("autorag.data.parse.llamaparse", "llama_parse"), "table_hybrid_parse": ( "autorag.data.parse.table_hybrid_parse", "table_hybrid_parse", ), # chunk "llama_index_chunk": ("autorag.data.chunk", "llama_index_chunk"), "langchain_chunk": ("autorag.data.chunk", "langchain_chunk"), # query_expansion "query_decompose": ("autorag.nodes.queryexpansion", "QueryDecompose"), "hyde": ("autorag.nodes.queryexpansion", "HyDE"), "pass_query_expansion": ( "autorag.nodes.queryexpansion", "PassQueryExpansion", ), "multi_query_expansion": ( "autorag.nodes.queryexpansion", "MultiQueryExpansion", ), "QueryDecompose": ("autorag.nodes.queryexpansion", "QueryDecompose"), "HyDE": ("autorag.nodes.queryexpansion", "HyDE"), "PassQueryExpansion": ( "autorag.nodes.queryexpansion", "PassQueryExpansion", ), "MultiQueryExpansion": ( "autorag.nodes.queryexpansion", "MultiQueryExpansion", ), # retrieval "bm25": ("autorag.nodes.retrieval", "BM25"), "BM25": ("autorag.nodes.retrieval", "BM25"), "vectordb": ("autorag.nodes.retrieval", "VectorDB"), "VectorDB": ("autorag.nodes.retrieval", "VectorDB"), "hybrid_rrf": ("autorag.nodes.retrieval", "HybridRRF"), "HybridRRF": ("autorag.nodes.retrieval", "HybridRRF"), "hybrid_cc": ("autorag.nodes.retrieval", "HybridCC"), "HybridCC": ("autorag.nodes.retrieval", "HybridCC"), # passage_augmenter "prev_next_augmenter": ( "autorag.nodes.passageaugmenter", "PrevNextPassageAugmenter", ), "PrevNextPassageAugmenter": ( "autorag.nodes.passageaugmenter", "PrevNextPassageAugmenter", ), "pass_passage_augmenter": ( "autorag.nodes.passageaugmenter", "PassPassageAugmenter", ), "PassPassageAugmenter": ( "autorag.nodes.passageaugmenter", "PassPassageAugmenter", ), # passage_reranker "monot5": ("autorag.nodes.passagereranker", "MonoT5"), "MonoT5": ("autorag.nodes.passagereranker", "MonoT5"), "tart": ("autorag.nodes.passagereranker.tart", "Tart"), "Tart": ("autorag.nodes.passagereranker.tart", "Tart"), "upr": ("autorag.nodes.passagereranker", "Upr"), "Upr": ("autorag.nodes.passagereranker", "Upr"), "koreranker": ("autorag.nodes.passagereranker", "KoReranker"), "KoReranker": ("autorag.nodes.passagereranker", "KoReranker"), "pass_reranker": ("autorag.nodes.passagereranker", "PassReranker"), "PassReranker": ("autorag.nodes.passagereranker", "PassReranker"), "cohere_reranker": ("autorag.nodes.passagereranker", "CohereReranker"), "CohereReranker": ("autorag.nodes.passagereranker", "CohereReranker"), "rankgpt": ("autorag.nodes.passagereranker", "RankGPT"), "RankGPT": ("autorag.nodes.passagereranker", "RankGPT"), "jina_reranker": ("autorag.nodes.passagereranker", "JinaReranker"), "JinaReranker": ("autorag.nodes.passagereranker", "JinaReranker"), "colbert_reranker": ("autorag.nodes.passagereranker", "ColbertReranker"), "ColbertReranker": ("autorag.nodes.passagereranker", "ColbertReranker"), "sentence_transformer_reranker": ( "autorag.nodes.passagereranker", "SentenceTransformerReranker", ), "SentenceTransformerReranker": ( "autorag.nodes.passagereranker", "SentenceTransformerReranker", ), "flag_embedding_reranker": ( "autorag.nodes.passagereranker", "FlagEmbeddingReranker", ), "FlagEmbeddingReranker": ( "autorag.nodes.passagereranker", "FlagEmbeddingReranker", ), "flag_embedding_llm_reranker": ( "autorag.nodes.passagereranker", "FlagEmbeddingLLMReranker", ), "FlagEmbeddingLLMReranker": ( "autorag.nodes.passagereranker", "FlagEmbeddingLLMReranker", ), "time_reranker": ("autorag.nodes.passagereranker", "TimeReranker"), "TimeReranker": ("autorag.nodes.passagereranker", "TimeReranker"), "openvino_reranker": ("autorag.nodes.passagereranker", "OpenVINOReranker"), "OpenVINOReranker": ("autorag.nodes.passagereranker", "OpenVINOReranker"), "voyageai_reranker": ("autorag.nodes.passagereranker", "VoyageAIReranker"), "VoyageAIReranker": ("autorag.nodes.passagereranker", "VoyageAIReranker"), "mixedbreadai_reranker": ( "autorag.nodes.passagereranker", "MixedbreadAIReranker", ), "MixedbreadAIReranker": ( "autorag.nodes.passagereranker", "MixedbreadAIReranker", ), "flashrank_reranker": ("autorag.nodes.passagereranker", "FlashRankReranker"), "FlashRankReranker": ("autorag.nodes.passagereranker", "FlashRankReranker"), # passage_filter "pass_passage_filter": ("autorag.nodes.passagefilter", "PassPassageFilter"), "similarity_threshold_cutoff": ( "autorag.nodes.passagefilter", "SimilarityThresholdCutoff", ), "similarity_percentile_cutoff": ( "autorag.nodes.passagefilter", "SimilarityPercentileCutoff", ), "recency_filter": ("autorag.nodes.passagefilter", "RecencyFilter"), "threshold_cutoff": ("autorag.nodes.passagefilter", "ThresholdCutoff"), "percentile_cutoff": ("autorag.nodes.passagefilter", "PercentileCutoff"), "PassPassageFilter": ("autorag.nodes.passagefilter", "PassPassageFilter"), "SimilarityThresholdCutoff": ( "autorag.nodes.passagefilter", "SimilarityThresholdCutoff", ), "SimilarityPercentileCutoff": ( "autorag.nodes.passagefilter", "SimilarityPercentileCutoff", ), "RecencyFilter": ("autorag.nodes.passagefilter", "RecencyFilter"), "ThresholdCutoff": ("autorag.nodes.passagefilter", "ThresholdCutoff"), "PercentileCutoff": ("autorag.nodes.passagefilter", "PercentileCutoff"), # passage_compressor "tree_summarize": ("autorag.nodes.passagecompressor", "TreeSummarize"), "pass_compressor": ("autorag.nodes.passagecompressor", "PassCompressor"), "refine": ("autorag.nodes.passagecompressor", "Refine"), "longllmlingua": ("autorag.nodes.passagecompressor", "LongLLMLingua"), "TreeSummarize": ("autorag.nodes.passagecompressor", "TreeSummarize"), "Refine": ("autorag.nodes.passagecompressor", "Refine"), "LongLLMLingua": ("autorag.nodes.passagecompressor", "LongLLMLingua"), "PassCompressor": ("autorag.nodes.passagecompressor", "PassCompressor"), # prompt_maker "fstring": ("autorag.nodes.promptmaker", "Fstring"), "long_context_reorder": ("autorag.nodes.promptmaker", "LongContextReorder"), "window_replacement": ("autorag.nodes.promptmaker", "WindowReplacement"), "Fstring": ("autorag.nodes.promptmaker", "Fstring"), "LongContextReorder": ("autorag.nodes.promptmaker", "LongContextReorder"), "WindowReplacement": ("autorag.nodes.promptmaker", "WindowReplacement"), # generator "llama_index_llm": ("autorag.nodes.generator", "LlamaIndexLLM"), "vllm": ("autorag.nodes.generator", "Vllm"), "openai_llm": ("autorag.nodes.generator", "OpenAILLM"), "vllm_api": ("autorag.nodes.generator", "VllmAPI"), "LlamaIndexLLM": ("autorag.nodes.generator", "LlamaIndexLLM"), "Vllm": ("autorag.nodes.generator", "Vllm"), "OpenAILLM": ("autorag.nodes.generator", "OpenAILLM"), "VllmAPI": ("autorag.nodes.generator", "VllmAPI"), } return dynamically_find_function(module_name, support_modules)
[docs] def get_support_nodes(node_name: str) -> Callable: support_nodes = { "query_expansion": ( "autorag.nodes.queryexpansion.run", "run_query_expansion_node", ), "retrieval": ("autorag.nodes.retrieval.run", "run_retrieval_node"), "generator": ("autorag.nodes.generator.run", "run_generator_node"), "prompt_maker": ("autorag.nodes.promptmaker.run", "run_prompt_maker_node"), "passage_filter": ( "autorag.nodes.passagefilter.run", "run_passage_filter_node", ), "passage_compressor": ( "autorag.nodes.passagecompressor.run", "run_passage_compressor_node", ), "passage_reranker": ( "autorag.nodes.passagereranker.run", "run_passage_reranker_node", ), "passage_augmenter": ( "autorag.nodes.passageaugmenter.run", "run_passage_augmenter_node", ), } return dynamically_find_function(node_name, support_nodes)