Source code for autorag.vectordb.base

from abc import abstractmethod
from typing import List, Tuple, Union

from llama_index.embeddings.openai import OpenAIEmbedding

from autorag.utils.util import openai_truncate_by_token
from autorag.embedding.base import EmbeddingModel


[docs] class BaseVectorStore: support_similarity_metrics = ["l2", "ip", "cosine"] def __init__( self, embedding_model: Union[str, List[dict]], similarity_metric: str = "cosine", embedding_batch: int = 100, ): self.embedding = EmbeddingModel.load(embedding_model)() self.embedding_batch = embedding_batch self.embedding.embed_batch_size = embedding_batch assert ( similarity_metric in self.support_similarity_metrics ), f"search method {similarity_metric} is not supported" self.similarity_metric = similarity_metric
[docs] @abstractmethod async def add( self, ids: List[str], texts: List[str], ): pass
[docs] @abstractmethod async def query( self, queries: List[str], top_k: int, **kwargs ) -> Tuple[List[List[str]], List[List[float]]]: pass
[docs] @abstractmethod async def fetch(self, ids: List[str]) -> List[List[float]]: """ Fetch the embeddings of the ids. """ pass
[docs] @abstractmethod async def is_exist(self, ids: List[str]) -> List[bool]: """ Check if the ids exist in the Vector DB. """ pass
[docs] @abstractmethod async def delete(self, ids: List[str]): pass
[docs] def truncated_inputs(self, inputs: List[str]) -> List[str]: if isinstance(self.embedding, OpenAIEmbedding): openai_embedding_limit = 8000 results = openai_truncate_by_token( inputs, openai_embedding_limit, self.embedding.model_name ) return results return inputs